LEGGE 9 gennaio 1991, n. 10

RELAZIONE TECNICA DLgs 29 dicembre 2006, n. 311 - ALLEGATO E DPR 2 aprile 2009, n. 59

COMMITTENTE

CITTA' DI TORINO

EDIFICIO

Scuola Elementare MURATORI

INDIRIZZO

Via Vezzolano 20

COMUNE

TORINO

INTERVENTO

Analisi energetica dello stato di fatto

- DPR 2 aprile 2009, n. 59
- Relazione Tecnica DLgs 29 dicembre 2006, n. 311 Allegato E

- Allegati

Rif: Via Vezzolano ESIST rev 03.E01

Porto

Direttori lavori degli impianti termici

1.

LEGGE 9 gennaio 1991, n. 10

RELAZIONE TECNICA DI CUI ALL'ART. 28 DELLA LEGGE 09.01.91 N. 10 ATTESTANTE LA RISPONDENZA ALLE PRESCRIZIONI IN MATERIA DI CONTENIMENTO DEL CONSUMO ENERGETICO DEGLI EDIFICI

DLgs 29 dicembre 2006, n. 311 - ALLEGATO E DPR 2 aprile 2009, n. 59

INFORMAZIONI GENERALI	
Comune di TORINO	Provincia Provincia
Progetto per la realizzazione di (speci	ificare il tipo di opere)
Scuola Elementare MURATORI	
Sito in (specificare l'ubicazione o, in censimento al Nuovo Catasto Territor	alternativa indicare che è da edificare nel terreno di cui si riportano gli estremi del riale)
Via Vezzolano 20	
Concessione edilizia n.	del
	aplesso di edifici) in base alla categoria di cui all'articolo 3 del decreto del Presidente 2; per edifici costituiti da parti appartenenti a categorie differenti, specificare le diverse
Prevalente E.7	
Numero delle unità abitative	
Committenti	CITTA' DI TORINO PIAZZA PALAZZO DI CITTA', 1
Progettisti dell'isolamento termico	
	Portolese Giuseppe Albo: Architetti Pr: Torino N.Iscr.: 5533
Progettisti degli impianti termici	
	Capo Giuseppe
	Albo: <i>Ingegneri</i> Pr: <i>Torino</i> N.Iscr.: 7210V
Direttori lavori dell'isolamento termi	со

L'edificio (o il complesso di edifici) rientra tra quelli di proprietà pubblica o adibiti ad uso pubblico ai fini dell'articolo 5, comma 15, del decreto del Presidente della Repubblica 26 agosto 1993, n. 412 (utilizzo delle fonti rinnovabili di energia) e dell'Allegato I, comma 14 del decreto legislativo.

2.	FATTORI TIPOLOGICI DELL'EDIFICIO (O DEL COMPLESSO DI ED	OIFICI)		
	Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica,	sono i seg	guenti:	
X	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei	singoli l	ocali	
X	Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare			
	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati p degli apporti solari	er favorir	e lo sfruttament)
3.	PARAMETRI CLIMATICI DELLA LOCALITA'			
	Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)	_	2617	_ GG
	Temperatura minima di progetto (dell'aria esterna secondo norma UNI 5364 e su aggiornamenti)	ccessivi -	-8	_ °C
4.	DATI TECNICI E COSTRUTTIVI DELL' EDIFICIO (O DEL COMPLES RELATIVE STRUTTURE	SO DI 1	EDIFICI) E D	ELLE
	Volume degli ambienti climatizzati al lordo delle strutture che li delimitano (V)	18539,5	m³
	Superficie esterna che delimita il volume	S)	7567,63	m²
	Rapporto S/V		0,41	1/m
	Superficie utile dell'edificio		4132,18	m²
	Valore di progetto della temperatura interna		20	°C
	Valore di progetto dell'umidità relativa interna		65	%

Sì

No

5. DATI RELATIVI AGLI IMPIANTI

Sistemi di produzione e di distribuzione dell'acqua calda sanitaria

5.1 Impianti termici

n.d.

a) Descrizione impianto	a)	Desc	rizione	impi	anto
-------------------------	----	------	---------	------	------

Impianto centralizzato per riscaldamento ambienti Sistemi di generazione N. 2 generatori modulari a condensazione alimentati a gas metano N. 1 generatore a basso rendimento alimentato a gas metano Sistemi di termoregolazione Climatica Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie n.d.	Descrizione impianto
Sistemi di generazione N. 2 generatori modulari a condensazione alimentati a gas metano N. 1 generatore a basso rendimento alimentato a gas metano Sistemi di termoregolazione Climatica Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Tipologia
Sistemi di generazione N. 2 generatori modulari a condensazione alimentati a gas metano N. 1 generatore a basso rendimento alimentato a gas metano Sistemi di termoregolazione Climatica Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Impianto centralizzato per riscaldamento ambienti
N. 2 generatori modulari a condensazione alimentati a gas metano N. 1 generatore a basso rendimento alimentato a gas metano Sistemi di termoregolazione Climatica Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	j
N. 1 generatore a basso rendimento alimentato a gas metano Sistemi di termoregolazione Climatica Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Sistemi di generazione
Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	
Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	
Sistemi di contabilizzazione dell'energia termica n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Sistemi di termoregolazione
n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Climatica
n.d. Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	
Sistemi di distribuzione del vettore termico Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Sistemi di contabilizzazione dell'energia termica
Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	n.d.
Distribuzione orizzontale in piano tecnico e colonne montanti Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	
Sistemi di ventilazione forzata: tipologie n.d. Sistemi di accumulo termico: tipologie	Sistemi di distribuzione del vettore termico
n.d. Sistemi di accumulo termico: tipologie	Distribuzione orizzontale in piano tecnico e colonne montanti
n.d. Sistemi di accumulo termico: tipologie	
Sistemi di accumulo termico: tipologie	Sistemi di ventilazione forzata: tipologie
	n.d.
n.d.	Sistemi di accumulo termico: tipologie
	n.d.

Gradi Francesi

b) Specifiche dei generatori di energia

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse dai generatori di calore convenzionali, quali ad esempio:macchine frigorifere, pompe di calore, gruppi di cogenerazione di energia termica ed elettrica, le prestazioni delle macchine diverse dai generatori di calore sono fornite indicando le caratteristiche normalmente utilizzate per le specifiche apparecchiature, applicando, ove esistenti, le vigenti norme tecniche.

a)	Specifiche relative ai sistemi di regolazione dell'impianto termico	
c)	Specificite relative at sistemi di regolazione dell'impianto termico	
	Tipo di conduzione prevista	intermittente
	Altro	
	Sistema di telegestione dell'impianto termico, se esistente (descrizione sintetica delle funzioni)	
	n.d.	
e)	Terminali di erogazione dell'energia termica	
	Numero di apparecchi	
	Tipo Radiatori in ghisa	
	Potenza termica nominale: vedi elenco allegato (rif. n.)	
k)	Schemi funzionali degli impianti termici	
	Vedi progetto preliminare IRIDE	

6. PRINCIPALI RISULTATI DEI CALCOLI DELL'EDIFICIO (Scuola Elementare MURATORI)

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Trasmittanza W/m²K	Valore limite W/m ² K	Verifica
M1	Mur est paramano cassa vuota 40 cm	1,644	NR*	NR*
M2	Mur est paramano cassa vuota 25 cm	1,838	NR*	NR*
М3	Muratura bagni verso cavedio	2,084	NR*	NR*
M4	Murature sottofinestra aule intonacate 18 cm	2,442	NR*	NR*
M5	Mur est intonacata cassa vuota 25 cm	1,550	NR*	NR*
M6	Mur intonacata cassa vuota 25 cm verso CT	1,363	NR*	NR*
M7	Mur intonacata cassa vuota 25 cm verso LNR	1,349	NR*	NR*
P1	Pavimento piano semint su vespaio	1,223	NR*	NR*
P4	Pavimento interpiano verso CT	1,223	NR*	NR*
P5	Pavimento interpiano verso locali non riscaldati	1,223	NR*	NR*
S1	Coperture piane	1,405	NR*	NR*
S2	Terrazze su spazi riscaldati	1,378	NR*	NR*
S4	Coperture a falde	1,528	NR*	NR*

^(*) Verifica non richiesta secondo le indicazioni di cui all'articolo 4 del DPR 59/09

NOTA. Viene riportato il valore di trasmittanza termica media, comprensiva del contributo di ponti termici e di strutture oggetto di riduzione di spessore.

Caratteristiche igrometriche dei componenti opachi dell'involucro edilizio

Cod.	Descrizione	Verifica igrometrica
M1	Mur est paramano cassa vuota 40 cm	Negativa
M2	Mur est paramano cassa vuota 25 cm	Negativa
М3	Muratura bagni verso cavedio	Negativa
M4	Murature sottofinestra aule intonacate 18 cm	Negativa
M5	Mur est intonacata cassa vuota 25 cm	Negativa
M6	Mur intonacata cassa vuota 25 cm verso CT	Negativa
M7	Mur intonacata cassa vuota 25 cm verso LNR	Negativa
P1	Pavimento piano semint su vespaio	Negativa
P4	Pavimento interpiano verso CT	Negativa
P5	Pavimento interpiano verso locali non riscaldati	Positiva
S1	Coperture piane	Negativa

S2	Terrazze su spazi riscaldati	Negativa
S4	Coperture a falde	Negativa

Caratteristiche di massa superficiale MS e di trasmittanza termica periodica YIE dei componenti opachi

Cod.	Descrizione	MS kg/m²	Valore limite kg/m ²	YIE W/m²K	Valore limite W/m ² K	Verifica
M1	Mur est paramano cassa vuota 40 cm	243	NR*	0,655	NR*	NR*
M2	Mur est paramano cassa vuota 25 cm	243	NR*	0,655	NR*	NR*
МЗ	Muratura bagni verso cavedio	86	NR*	1,497	NR*	NR*
M4	Murature sottofinestra aule intonacate 18 cm	114	NR*	1,056	NR*	NR*
M5	Mur est intonacata cassa vuota 25 cm	148	NR*	0,654	NR*	NR*
S1	Coperture piane	405	NR*	0,435	NR*	NR*
S2	Terrazze su spazi riscaldati	430	NR*	0,390	NR*	NR*
S4	Coperture a falde	365	NR*	0,626	NR*	NR*

^(*) Verifica non richiesta secondo le indicazioni di cui all'articolo 4 del DPR 59/09

Caratteristiche termiche delle chiusure trasparenti comprensive degli infissi

Cod.	Descrizione	Trasmittanza W/m²K	Valore limite W/m ² K	Verifica
------	-------------	-----------------------	-------------------------------------	----------

F1	Finestratura F1 300 x 255 cm VS	4,140	NR*	NR*
F10	Finestra F8 Vs 55 x 155 cm	4,020	NR*	NR*
F11	Finestra F9 Vs 50 x 70 cm	3,870	NR*	NR*
F14	Facciata scale F11 Uglass 650 x 300	4,190	NR*	NR*
F16	Facciata continua F12 e F 13 315 x 630 cm	4,150	NR*	NR*
F17	Facciata continua F19 Vs 315 x 300 cm	4,160	NR*	NR*
F18	Finestra F14 Uglass 225 x 165 cm	4,220	NR*	NR*
F20	Facciata continua F 15 315 x 255 cm	4,150	NR*	NR*
F22	Porta distribuzione pasti F18 Vs 90 x 250 cm	4,090	NR*	NR*
F24	Portafinestra F2a -F3a 100 x 320 cm	4,090	NR*	NR*
F26	Finestratura F2b - F3b 200 x 255 cm	4,140	NR*	NR*
F27	Portafinestra F7a 120 x 320 cm	4,100	NR*	NR*
F28	Finestratura F7b 180 x 255 cm	4,150	NR*	NR*
F29	Finestratura ingresso F10 406 x 300 cm	4,120	NR*	NR*
F30	Finestra F 16a 310 x 80 cm	4,100	NR*	NR*
F31	Portafinestra F16b 130 x 220 cm	4,060	NR*	NR*
F32	Finestra F5 520 x 110	4,130	NR*	NR*
F4	Finestra F4 Vs 300 x 100 cm	4,060	NR*	NR*
F7	Finestra F6 Vs 100 x 100 cm	4,050	NR*	NR*

^(*) Verifica non richiesta secondo le indicazioni di cui all'articolo 4 del DPR 59/09

Caratteristiche termiche centrali dei vetri

Cod. Descrizione	Trasmittanza W/m ² K	Valore limite W/m ² K	Verifica	
------------------	------------------------------------	-------------------------------------	----------	--

F1	Finestratura F1 300 x 255 cm VS	4,220	NR*	NR*
F10	Finestra F8 Vs 55 x 155 cm	4,220	NR*	NR*
F11	Finestra F9 Vs 50 x 70 cm	4,220	NR*	NR*
F14	Facciata scale F11 Uglass 650 x 300	4,220	NR*	NR*
F16	Facciata continua F12 e F 13 315 x 630 cm	4,220	NR*	NR*
F17	Facciata continua F19 Vs 315 x 300 cm	4,220	NR*	NR*
F18	Finestra F14 Uglass 225 x 165 cm	4,220	NR*	NR*
F20	Facciata continua F 15 315 x 255 cm	4,220	NR*	NR*
F22	Porta distribuzione pasti F18 Vs 90 x 250 cm	4,220	NR*	NR*
F24	Portafinestra F2a -F3a 100 x 320 cm	4,220	NR*	NR*
F26	Finestratura F2b - F3b 200 x 255 cm	4,220	NR*	NR*
F27	Portafinestra F7a 120 x 320 cm	4,220	NR*	NR*
F28	Finestratura F7b 180 x 255 cm	4,220	NR*	NR*
F29	Finestratura ingresso F10 406 x 300 cm	4,220	NR*	NR*
F30	Finestra F 16a 310 x 80 cm	4,220	NR*	NR*
F31	Portafinestra F16b 130 x 220 cm	4,220	NR*	NR*
F32	Finestra F5 520 x 110	4,220	NR*	NR*
F4	Finestra F4 Vs 300 x 100 cm	4,220	NR*	NR*
F7	Finestra F6 Vs 100 x 100 cm	4,220	NR*	NR*

^(*) Verifica non richiesta secondo le indicazioni di cui all'articolo 4 del DPR 59/09

Classe di permeabilità all'aria dei serramenti esterni

n.d.

Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate

Attenuazione dei ponti termici (provvedimenti e calcoli)

Numeri di ricambi d'aria (media nelle 24 ore)

N.	Zona	Valore di progetto UNI	Valore minimo imposto da
		(h ⁻¹)	norme (h^{-1})

Portata d'aria di ricambio

N.	Per ventilazione meccanica controllata	Attraverso apparecchi di recupero	Rendimento
	G (m³/h)	(m³/h)	(%)

b)	Valori dei rendimenti medi stagionali di progetto		
	Rendimento di regolazione	83,9	<u></u> %
	Rendimento di distribuzione	90,1	%
	Rendimento di emissione	91	%
	Rendimento di produzione	88	%
	Dandimente alchele medie eterionale di propetto	60,6	\
	Rendimento globale medio stagionale di progetto Rendimento globale medio stagionale minimo imposto dal regolamento	NR*	
	Verifica (positiva/negativa)	NR*	
	(*) Verifica non richiesta secondo le indicazioni di cui all'articolo 4 del DPR 59/09	NK	
c)	Indice di prestazione energetica per la climatizzazione invernale Epi		
	Metodo di calcolo adottato (indicazione obbligatoria) UNI TS 11	300-1, UNI TS 1 correlate	1300-2 e norme
	Rapporto S/V	0,41	1/m
	Valore di progetto Epi	77,66	kWh/(m³anno)
	Valore limite	16,14	kWh/(m³anno)
	Verifica (positiva/negativa)	Negativa	
			_
	Fabbisogno di combustibile	152442,4	Nm³ Metano
	Fabbisogno di energia elettrica da rete		kWhe
	Fabbisogno di energia elettrica da produzione locale		kWhe
d)	Indice di prestazione energetica normalizzato per la climatizzazione invernal	le	
	Valore di progetto (trasformazione del corrispondente dato calcolato al punto c)	104,32	kJ/(m ³ GG)
7.	ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEF DALLA NORMATIVA VIGENTE	ROGHE A NO	ORME FISSATE
	Nei casi in cui la normativa vigente consente di derogare ad obblighi general adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico.	lmente validi in q	uesta sezione vanno
	Motivazione		

8. DOCUMENTAZIONE ALLEGATA (elenco indicativo)

N.	piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali.
Rif.:	Vedi progetto definitivo Settore Edilizia Scolastica
N. Rif.:	prospetti e sezioni degli edifici con evidenziazione di eventuali sistemi di protezione solare (completi di documentazione relativa alla marcatura CE). Vedi progetto definitivo Settore Edilizia Scolastica
20211	- Four progette dominities dettore Zumzia decidencia
N.	elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.
Rif.:	
N.	schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo "Dati relativi agli impianti".
Rif.:	Vedi progetto preliminare IRIDE
N.	tabelle con indicazione delle caratteristiche termiche, termoigrometriche e massa efficace dei componenti opachi dell'involucro edilizio.
Rif.:	
N. Rif.:	tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e loro permeabilità all'aria.
KII.:	
N. Rif.:	tabelle con l'elenco dei terminali di erogazione suddivisi per potenza termica nominale.
N. Rif.:	tabelle indicanti i provvedimenti ed i calcoli per l'attenuazione dei ponti termici.
N. Rif.:	tabelle indicanti la valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate.

I calcoli e le documentazioni che seguono sono disponibili ai fini di eventuali verifiche da parte dell'ente di controllo presso i progettisti.
documentazione relativa al rendimento utile dei generatori di calore
X calcolo delle potenze di progetto dei locali
X calcolo di Ht, Hv, Hg, Ha, Hu
x calcolo di Ql (perdite), Qs (apporti solari), Qi (apporti interni): mensili
x calcolo di Qh (energia utile), mensile - stagionale secondo UNI/TS 11300-1
x calcolo dei rendimenti: emissione, regolazione, distribuzione, produzione
x calcolo di Q (energia primaria), mensile - stagionale secondo UNI/TS 11300-2
x calcolo del fabbisogno annuo di energia primaria di progetto
x calcolo del fabbisogno di energia primaria limite
calcolo di dimensionamento dei camini secondo norma

10. DICHIARAZIONE DI RISPONDENZA

Il sottoscritto	Giuseppe	Portolese	
	NOME	COGNOME	
iscritto a	Architetti	Torino	5533
	ALBO - ORDINE O COLLEGIO DI APPARTENENZA	PROV.	N. ISCRIZIONE
Il sottoscritto	Giuseppe	Саро	
	NOME	COGNOME	
iscritto a			704014
	Ingegneri	Torino	7210V

essendo a conoscenza delle sanzioni previste dall'articolo 15, commi 1 e 2, del decreto legislativo di attuazione della direttiva 2002/91/CE

dichiara

sotto la propria personale responsabilità che:

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto attuativo della direttiva 2002/91/CE;
- b) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data,

26 NOV. 2010

Il progettista

AGENZIA ENERGIA E AMBIENTE DI TORINO

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Mur est paramano cassa vuota 40 cm

Codi	ce s	itrut	tura

M1

N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	80	0,400	5,000	775	22,222	22,222	0,200
3	Aria non ventilata (fl.orizz.)	190	1,056	5,556	0	3800,000	3800,000	0,180
4	Mattone semipieno	120	0,632	5,267	1508	22,222	22,222	0,190

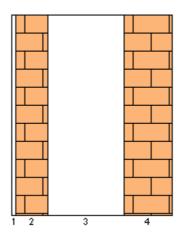
Spessore totale [mm] 400

Massa superficiale [kg/m²] 261

Trasmittanza periodica [W/m²K] 0,655

Conduttanza unitaria superficiale interna

Conduttanza unitaria superficiale esterna


TRASMITTANZA TOTALE [W/m²K]

1,257

Resistenza unitaria superficiale interna 0,130

Resistenza unitaria superficiale esterna 0,086

RESISTENZA TERMICA TOTALE [m²K/W] 0,796

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

X	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 250 [g/m²]
	Tale quantità può rievaporare durante la stagione estiva.

ш	La struttura non e soggetta a fenomeni di condensa superficiale.	
	La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

Simbologia

s	Spessore dello strato	δa	Permeabilità al vapore nell'intervallo 0-50%	Ti	Temperatura interna
λ	Conduttività	δu	Permeabilità al vapore nell'intervallo 50-95%	Iе	Temperatura esterna
С	Conduttanza	R	Resistenza termica dello strato	Pi	Pressione parziale interna
ρ	Massa volumica			Pe	Pressione parziale esterna

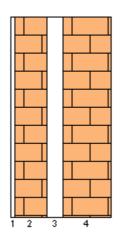
secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Mur est paramano cassa vuota 25 cm

Codice struttura

M2

N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	80	0,400	5,000	775	22,222	22,222	0,200
3	Aria non ventilata (fl.orizz.)	40	0,222	5,556	0	800,000	800,000	0,180
4	Mattone semipieno	120	0,632	5,267	1508	22,222	22,222	0,190


Spessore totale [mm] 250 Massa superficiale [kg/m²] 261 0,655 Trasmittanza periodica [W/m²K]

Conduttanza unitaria superficiale interna 7,692 Conduttanza unitaria 11,660 superficiale esterna **TRASMITTANZA** TOTALE [W/m²K] 1,257

Resistenza unitaria superficiale interna 0,130 Resistenza unitaria 0,086

RESISTENZA TERMICA TOTALE [m²K/W] 0,796

superficiale esterna

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

X	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 394 [g/m²]
	Tale quantità può rievaporare durante la stagione estiva.

ш	La struttura non e soggetta a fenomeni di condensa superficiale.	
	La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

Simbologia

s	Spessore dello strato	δ a	Permeabilità al vapore nell'intervallo 0-50%	Ti	Temperatura interna
λ	Conduttività	δ u	Permeabilità al vapore nell'intervallo 50-95%	Te	Temperatura esterna
С	Conduttanza	R	Resistenza termica dello strato	Pi	Pressione parziale interna
ρ	Massa volumica			Pe	Pressione parziale esterna

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Muratura bagni verso cavedio

Codice struttura

M3

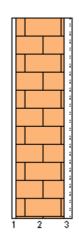
N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	120	0,387	3,225	717	22,222	22,222	0,310
3	Intonaco di cemento e sabbia	20	1,000	50,000	1800	20,000	33,333	0,020

 Spessore totale [mm]
 150

 Massa superficiale [kg/m²]
 140

 Trasmittanza periodica [W/m²K]
 1,497

Conduttanza unitaria superficiale interna 7,692


Conduttanza unitaria superficiale esterna 11,660

TRASMITTANZA TOTALE [W/m²K] 1,799

Resistenza unitaria superficiale interna 0,130

Resistenza unitaria superficiale esterna 0,086

RESISTENZA TERMICA TOTALE [m²K/W] 0,556

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1423	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

_	La differenza minima di pressione tra quella di saturazione e quella reale è pari a 0 [Pa]
	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pa

La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a _____ [g/m²]
Tale quantità può rievaporare durante la stagione estiva.

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% λ C δυ Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Murature sottofinestra aule intonacate 18 cm

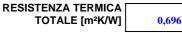
M4

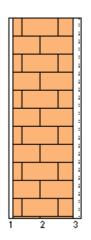
N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	150	0,333	2,220	760	22,222	22,222	0,450
3	Intonaco di cemento e sabbia	20	1,000	50,000	1800	20,000	33,333	0,020

 Spessore totale [mm]
 180

 Massa superficiale [kg/m²]
 168

 Trasmittanza periodica [W/m²K]
 1,056


Conduttanza unitaria superficiale interna 7,692


Conduttanza unitaria superficiale esterna 11,660

TRASMITTANZA TOTALE [W/m²K] 1,436

Resistenza unitaria superficiale interna 0,130

Resistenza unitaria superficiale esterna 0,086

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

X	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 3,48 E-01 [g/m²]
	Tale quantità può rievaporare durante la stagione estiva.

Ш	La struttura non è soggetta a fenomeni di condensa superficiale.	
	La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

Simbologia

s λ C	Spessore dello strato Conduttività Conduttanza Massa volumica	δa δu R	Permeabilità al vapore nell'intervallo 0-50% Permeabilità al vapore nell'intervallo 50-95% Resistenza termica dello strato	Ti Te Pi Pe	Temperatura interna Temperatura esterna Pressione parziale esterna Pressione parziale esterna
ρ	Massa volumica			Pe	Pressione parziale esterna

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Mur est intonacata cassa vuota 25 cm

Codice struttura

M5

0,086

N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	80	0,400	5,000	775	22,222	22,222	0,200
3	Aria non ventilata (fl.orizz.)	20	0,114	5,714	0	400,000	400,000	0,175
4	Mattone forato	120	0,387	3,225	717	22,222	22,222	0,310
5	Intonaco di cemento e sabbia	20	1,000	50,000	1800	20,000	33,333	0,020

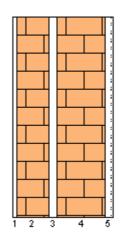
Spessore totale [mm] 250

Massa superficiale [kg/m²] 202

Trasmittanza periodica [W/m²K] 0,654

Conduttanza unitaria superficiale interna 7,692

Conduttanza unitaria superficiale esterna 11,660


TRASMITTANZA TOTALE [W/m²K] 1,074

Resistenza unitaria superficiale interna 0,130

Resistenza unitaria

RESISTENZA TERMICA TOTALE [m²K/W] 0,931

superficiale esterna

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% Temperatura esterna λ C δυ Te Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Ре Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Mur intonacata cassa vuota 25 cm verso CT

-		atrı.	ttura
Coa	ce:	stru	mura

M6

N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	80	0,400	5,000	775	22,222	22,222	0,200
3	Aria non ventilata (fl.orizz.)	20	0,114	5,714	0	400,000	400,000	0,175
4	Mattone forato	120	0,387	3,225	717	22,222	22,222	0,310
5	Intonaco di cemento e sabbia	20	1,000	50,000	1800	20,000	33,333	0,020

Spessore totale [mm] 250

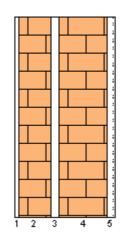
Massa superficiale [kg/m²] 202

Trasmittanza periodica [W/m²K] 0,567

Conduttanza unitaria superficiale interna

Conduttanza unitaria superficiale esterna

TRASMITTANZA TOTALE [W/m²K]


7,692

1,026

Resistenza unitaria superficiale interna 0,130

Resistenza unitaria superficiale esterna 0,130

RESISTENZA TERMICA TOTALE [m²K/W] 0,975

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

<u>N</u>	La struttura non e soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a 86 [Pa]
	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è p

☐ La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a _____ [g/m²] Tale quantità può rievaporare durante la stagione estiva.

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a ______[Pa

Simbologia

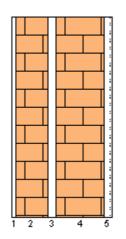
Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% Temperatura esterna λ C δυ Te Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Mur intonacata cassa vuota 25 cm verso LNR

Cod	ice	stri	Jtti	ıra

M7


N.	DESCRIZIONE STRATO (dall'interno verso l'esterno)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010
2	Mattone forato	80	0,400	5,000	775	22,222	22,222	0,200
3	Aria non ventilata (fl.orizz.)	20	0,114	5,714	0	400,000	400,000	0,175
4	Mattone forato	120	0,387	3,225	717	22,222	22,222	0,310
5	Intonaco di cemento e sabbia	20	1,000	50,000	1800	20,000	33,333	0,020

Spessore totale [mm] 250 Massa superficiale [kg/m²] 202 Trasmittanza periodica [W/m²K] 0,567 Conduttanza unitaria superficiale interna 7,692 Conduttanza unitaria superficiale esterna 7,692 **TRASMITTANZA** TOTALE [W/m²K] 1,026

Resistenza unitaria superficiale interna 0,130 Resistenza unitaria 0,130

RESISTENZA TERMICA TOTALE [m²K/W] 0,975

superficiale esterna

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	8,2	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non e soggetta a tenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a 461 [Pa]
La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a [g/m²] Tale quantità può rievaporare durante la stagione estiva.
La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a [Pa]

Simbologia

s Spessore dello strato λ Conduttività C Conduttanza ρ Massa volumica	δα δu R	Permeabilità al vapore nell'intervallo 0-50% Permeabilità al vapore nell'intervallo 50-95% Resistenza termica dello strato	Ti Te Pi Pe	Temperatura interna Temperatura esterna Pressione parziale interna Pressione parziale esterna
---	---------------	--	----------------------	--

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Pavimento piano semint su vespaio

Codice struttura

P1

N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410

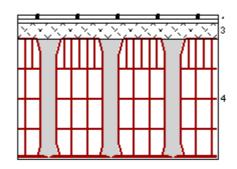
 Spessore totale [mm]
 360

 Massa superficiale [kg/m²]
 426

 Trasmittanza periodica [W/m²K]
 0,287

Conduttanza unitaria superficiale interna 5,882

Conduttanza unitaria superficiale esterna 5,882


TRASMITTANZA TOTALE [W/m²K] 1,223

Resistenza unitaria superficiale interna 0,170

Resistenza unitaria

superficiale esterna 0,170

RESISTENZA TERMICA TOTALE [m²K/W] 0,818

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	4,3	516
Estiva (luglio)	23,3	1858	23,3	1837

X	La struttura non è soggetta a fenomeni di condensa interstiziale.
	La differenza minima di pressione tra quella di saturazione e quella reale è pari a 297 [Pa]
_	

☐ La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a _____ [g/m²] Tale quantità può rievaporare durante la stagione estiva.

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% λ C δυ Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Pavimento interpiano

_ ·				
Codi	ce:	Stru	ITTU	ra

P2

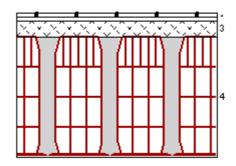
N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410

 Spessore totale [mm]
 360

 Massa superficiale [kg/m²]
 426

 Trasmittanza periodica [W/m²K]
 0,287

Conduttanza unitaria superficiale interna 5,882


Conduttanza unitaria superficiale esterna 5,882

TRASMITTANZA TOTALE [W/m²K] 1,223

Resistenza unitaria superficiale interna 0,170

Resistenza unitaria superficiale esterna 0,170

RESISTENZA TERMICA TOTALE [m²K/W] 0,818

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

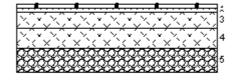
CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	4,3	516
Estiva (luglio)	23,3	1858	23,3	1837

X	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a 297 [Pa]

La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a _____ [g/m²] Tale quantità può rievaporare durante la stagione estiva.

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia


Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% λ C δυ Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Codice struttura **P3** Tipo di struttura: Pavimento su terreno

N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δu x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	C.I.s. di sabbia e ghiaia pareti interne (um. 2-5%)	50	1,910	38,200	2400	2,000	3,333	0,026
5	Ghiaia grossa senza argilla (um. 5%)	60	1,200	20,000	1700	40,000	40,000	0,050
				Ĭ	Ĭ			ĺ

Spessore totale [mm]	170	Conduttanza unitaria superficiale interna	5,882	Resistenza unitaria superficiale interna	0,170
Massa superficiale [kg/m²]	333	Conduttanza unitaria superficiale esterna	11,660	Resistenza unitaria superficiale esterna	0,086
Trasmittanza periodica [W/m²K]	1,347	TRASMITTANZA [TOTALE [W/m²K]	2,503	RESISTENZA TERMICA TOTALE [m²K/W]	0,400

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

Massa volumica

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	12,4	1439
Estiva (luglio)	23,3	1858	12,4	1439

X	La struttura non è soggetta a fenor La differenza minima di pressione		ensa interstiziale. saturazione e quella reale è pari a 50 [Pa]						
	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a [g/m²] Tale quantità può rievaporare durante la stagione estiva.								
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a [Pa]								
Simb	ologia								
S	Spessore dello strato	δ a	Permeabilità al vapore nell'intervallo 0-50%	Ti	Temperatura interna				
λ	Conduttività	δu	Permeabilità al vapore nell'intervallo 50-95%	Te	Temperatura esterna				
С	Conduttanza	R	Resistenza termica dello strato	Pi	Pressione parziale int				

Pressione parziale interna

Pressione parziale esterna

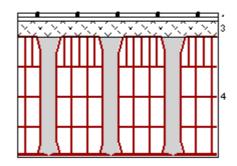
Pe

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Pavimento interpiano verso CT

0 - 11		-44
Codio	ce stri	uttura

P4


N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410

Spessore totale [mm] **360** Massa superficiale [kg/m²] 426 Trasmittanza periodica [W/m²K] 0,287

Conduttanza unitaria superficiale interna 5,882 Conduttanza unitaria superficiale esterna 5,882 **TRASMITTANZA** TOTALE [W/m²K] 1,223

Resistenza unitaria superficiale interna 0,170 Resistenza unitaria 0,170 superficiale esterna

RESISTENZA TERMICA TOTALE [m²K/W] 0,818

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

	La differenza minima di pressione tra quella di saturazione e quella reale è pari a 184 [Pa]
	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a [g/m²] Tale quantità può rievaporare durante la stagione estiva.
_	

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa]

La struttura non è soggetta a fenomeni di condensa interstiziale

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività $\delta\, u$ Permeabilità al vapore nell'intervallo 50-95% λ C Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Pavimento interpiano verso locali non riscaldati

Codice struttura

P5

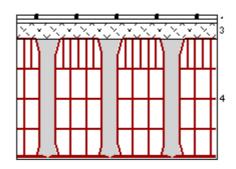
N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410

 Spessore totale [mm]
 360

 Massa superficiale [kg/m²]
 426

 Trasmittanza periodica [W/m²K]
 0,287

Conduttanza unitaria superficiale interna 5,882


Conduttanza unitaria superficiale esterna 5,882

TRASMITTANZA TOTALE [W/m²K] 1,223

Resistenza unitaria superficiale interna 0,170

Resistenza unitaria superficiale esterna 0,170

RESISTENZA TERMICA TOTALE [m²K/W] 0,818

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	8,2	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a 417 [Pa]

La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a _____ [g/m²] Tale quantità può rievaporare durante la stagione estiva.

X La struttura non è soggetta a fenomeni di condensa superficiale.
 La differenza minima di pressione tra quella di saturazione e quella reale è pari a 417 [Pa]

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% Te Temperatura esterna δu С Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

0,712

CARATTERISTICHE TERMICHE E IGROMETRICHE DEI COMPONENTI OPACHI DELL'INVOLUCRO EDILIZIO.

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Coperture piane Codice struttura S1

N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Impermeabilizzazione con guaina finit. in ardesia	8	0,230	28,750	1200	0,004	0,004	0,035
2	Sottofondo di cemento magro	50	0,700	14,000	1600	10,000	10,000	0,071
3	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410
4	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010

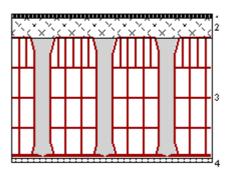
Spessore totale [mm] 368

Massa superficiale [kg/m²] 423

Trasmittanza periodica [W/m²K] 0,435

Conduttanza unitaria superficiale interna 10,000

Conduttanza unitaria superficiale esterna 11,660


TRASMITTANZA TOTALE [W/m²K] 1,405

Resistenza unitaria superficiale interna 0,100

Resistenza unitaria superficiale esterna 0,086

RESISTENZA TERMICA

TOTALE [m²K/W]

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

- La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 468 [g/m²]
 Tale quantità può rievaporare durante la stagione estiva.
- □ La struttura non è soggetta a fenomeni di condensa superficiale.
 La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% λ C δυ Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Terrazze su spazi riscaldati

Codice struttura

S2

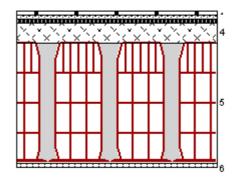
N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δ a x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in klinker	10	1,500	150	2500	0,667	0,667	0,007
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Impermeabilizzazione con guaina finit. in ardesia	8	0,230	28,750	1200	0,004	0,004	0,035
4	Sottofondo di cemento magro	50	0,700	14,000	1600	10,000	10,000	0,071
5	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410
6	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010

 Spessore totale [mm]
 388

 Massa superficiale [kg/m²]
 468

 Trasmittanza periodica [W/m²K]
 0,390

Conduttanza unitaria superficiale interna 10,000


Conduttanza unitaria superficiale esterna 11,660

TRASMITTANZA TOTALE [W/m²K] 1,378

Resistenza unitaria superficiale interna 0,100

Resistenza unitaria superficiale esterna 0,086

RESISTENZA TERMICA TOTALE [m²K/W] 0,726

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 455 [g/m²] Tale quantità può rievaporare durante la stagione estiva.

□ La struttura non è soggetta a fenomeni di condensa superficiale.
La differenza minima di pressione tra quella di saturazione e quella reale è pari a _____ [Pa

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività Permeabilità al vapore nell'intervallo 50-95% λ C δυ Te Temperatura esterna Conduttanza R Resistenza termica dello strato Ρi Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Soffitto interpiano

Codice struttura

S3

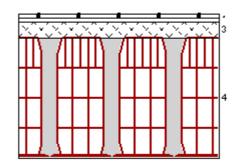
N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Piastrelle in marmo	10	3,000	300	2700	0,020	0,020	0,003
2	Malta di cemento	10	1,400	140	2000	7,407	7,407	0,007
3	Sottofondo di cemento magro	40	0,700	17,500	1600	10,000	10,000	0,057
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410

 Spessore totale [mm]
 360

 Massa superficiale [kg/m²]
 426

 Trasmittanza periodica [W/m²K]
 0,498

Conduttanza unitaria superficiale interna 10,000


Conduttanza unitaria superficiale esterna 10,000

TRASMITTANZA TOTALE [W/m²K] 1,476

Resistenza unitaria superficiale interna 0,100

Resistenza unitaria superficiale esterna 0,100

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	4,3	516
Estiva (luglio)	23,3	1858	23,3	1837

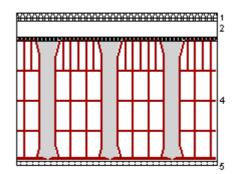
La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

X	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 159 [g/m²]
	Tale quantità può rievaporare durante la stagione estiva.

ш	La struttura non è soggetta a fenomeni di condensa superficiale.	
	La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa]

Simbologia

s Spessore dello strato δ a Permeabilità al vapore nell'intervallo 0-50% λ Conduttività δ u Permeabilità al vapore nell'intervallo 50-95% C Conduttanza R Resistenza termica dello strato ρ Massa volumica	Ti Te Pi Pe	Temperatura interna Temperatura esterna Pressione parziale interna Pressione parziale esterna
--	----------------------	---


secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 13788 - UNI 10351 - UNI 10355

Tipo di struttura: Coperture a falde Codice struttura **S4**

N.	DESCRIZIONE STRATO (dall'alto verso il basso)	s [mm]	λ [W/mK]	C [W/m²K]	ρ [kg/m³]	δa x 10 ⁻¹² [kg/msPa]	δ u x 10 ⁻¹² [kg/msPa]	R [m²K/W]
1	Tegole in terracotta	20	1,000	50,000	2000	-	-	-
2	Aria fortemente ventilata	40	-	-	0	-	-	-
3	Impermeabilizzazione con guaina finit. in ardesia	8	0,230	28,750	1200	0,004	0,004	0,035
4	Blocco da solaio	300	0,732	2,440	1050	22,222	22,222	0,410
5	Intonaco di cemento e sabbia	10	1,000	100	1800	20,000	33,333	0,010

Spessore totale [mm] **378** Massa superficiale [kg/m²] 383 Trasmittanza periodica [W/m²K] 0,626 Conduttanza unitaria superficiale interna 10,000 Conduttanza unitaria 10,000 superficiale esterna **TRASMITTANZA** TOTALE [W/m²K] 1,528

Resistenza unitaria superficiale interna 0,100 Resistenza unitaria 0,100 superficiale esterna **RESISTENZA TERMICA** TOTALE [m²K/W] 0,654

VERIFICA TERMOIGROMETRICA

Condizioni al contorno

CONDIZIONE	Ti [°C]	Pi [Pa]	Te [°C]	Pe [Pa]
Invernale (gennaio)	20,0	1519	0,4	516
Estiva (luglio)	23,3	1858	23,3	1837

La struttura non è soggetta a fenomeni di condensa interstiziale.	
La differenza minima di pressione tra quella di saturazione e quella reale è pari a	[Pa

X	La struttura è soggetta a fenomeni di condensa interstiziale. La quantità stagionale di condensato è pari a 342 [g/m²]
	Tale quantità può rievaporare durante la stagione estiva.

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale è pari a ____

Simbologia

Spessore dello strato δa Permeabilità al vapore nell'intervallo 0-50% Τi Temperatura interna s . Conduttività $\delta\, u$ Permeabilità al vapore nell'intervallo 50-95% Temperatura esterna λ C Te Ρi Conduttanza R Resistenza termica dello strato Pressione parziale interna Massa volumica Рe Pressione parziale esterna ρ

DATI GENERALI E CLIMATICI DELLA LOCALITA'

TORINO Provincia: TO

239 m slm

45° 7' latitudine Nord 7° 43' longitudine Est

Località di riferimento

per la temperatura : TORINO per la irradiazione I loc. : TORINO

II loc. ASTI

per il vento : TORINO

Vento

Regione A

Direzione prevalente : NE
Vento medio : 0,80 m/s
Vento max : 1,60 m/s

Dati invernali

Temperatura esterna : -8,0 °C
Gradi giorno : 2617
Zona climatica : E
Durata convenz. periodo riscald. : 183 gg

Dati estivi

Temp. esterna bulbo asciutto : 30,5 °C Temp. esterna bulbo umido : 22,3 °C Umidità relativa : 50,0 % Escursione term. giornaliera : 11,0 °C

Temperature medie mensili (°C):

GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
0,4	3,2	8,2	12,7	16,7	21,1	23,3	22,6	18,8	12,6	6,8	2,0

	Irradiazio	one med	lia mensi	le (MJ/m	²giorno)	45° 7'	Latit. No	rd. 7°	43' Lo	ngit. Est.	·	
	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
OR	5,0	7,8	12,2	17,0	19,6	21,5	23,5	18,5	13,5	9,3	5,5	4,7
N NE E SE SO O NO	1,8 1,9 4,1 7,1 9,0 7,1 4,1 1,9	2,5 3,2 6,1 9,1 10,8 9,1 6,1 3,2	3,7 5,5 8,9 11,3 11,9 11,3 8,9 5,5	5,5 8,4 11,7 12,4 11,2 12,4 11,7 8,4	7,6 10,5 12,9 12,0 9,8 12,0 12,9 10,5	9,1 11,8 13,9 12,1 9,5 12,1 13,9 11,8	9,1 12,6 15,4 13,7 10,6 13,7 15,4 12,6	6,3 9,4 12,5 12,5 10,7 12,5 12,5 9,4	4,2 6,3 9,6 11,3 11,2 11,3 9,6 6,3	2,9 3,9 7,1 10,0 11,6 10,0 7,1 3,9	1,9 2,2 4,4 7,3 9,2 7,3 4,4 2,2	1,5 1,7 4,0 7,4 9,6 7,4 4,0 1,7

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO

secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestratura F1 300 x 255 cm VS

Codice componente: F1

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	6,82	0,83	25,80	4,22	3,49		4,140

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,25

TRASMITTANZA TOTALE (W/m²K)

4,07

Considerando inoltre 11,10 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,14

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo) Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F4 Vs 300 x 100 cm Codice componente: F4

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	2,32	0,68	10,56	4,22	3,49		4,053

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,25

0,25

TRASMITTANZA TOTALE (W/m²K)

3,93

Considerando inoltre 8,00 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA TOTALE (m²K/W)

TRASMITTANZA TOTALE (W/m²K)

4,06

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F6 Vs 100 x 100 cm

Codice componente: F7

Nr.	Ag m²	Af m²	Lg m	Ug W/m²K	Uf W/m²K	UI W/mK	Uw W/m²K
1	0,77	0,23	3,52	4,22	3,49		4,051

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,26

TRASMITTANZA TOTALE (W/m²K)

3,85

Considerando inoltre 4,00 m di ponte termico con KI = 0,05 W/mKsi ottiene:

RESISTENZA TERMICA TOTALE (m²K/W)

0,25

TRASMITTANZA TOTALE (W/m²K)

4,05

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo) Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F8 Vs 55 x 155 cm Codice componente: F10

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	0,62	0,23	4,56	4,22	3,49		4,021

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,26

0,25

TRASMITTANZA TOTALE (W/m²K)

3,77

Considerando inoltre 4,20 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA TOTALE (m²K/W)

TRASMITTANZA TOTALE (W/m²K)

4,02

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO

secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F9 Vs 50 x 70 cm Codice componente: F11

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	0,18	0,17	1,76	4,22	3,49		3,863

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,28

TRASMITTANZA TOTALE (W/m²K)

3,53

Considerando inoltre 2,40 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,26 TOTALE (W/m²K)

3,87

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Facciata scale F11 Uglass 650 x 300

Codice componente: F14

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	18,62	0,88	30,24	4,22	3,49		4,187

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,14

Considerando inoltre 19,00 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,19

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO

secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Facciata scale F17 Uglass 650 x 200

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	12,20	0,80	24,24	4,22	3,49		4,175

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Codice componente: F15

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,11

Considerando inoltre 17,00 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,18

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Facciata continua F12 e F 13 315 x 630 cm

Codice componente: F16

	Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
		m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
ĺ	1	17,82	2,02	53,82	4,22	3,49		4,145

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,15

Considerando inoltre 18,90 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,20

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Facciata continua F19 Vs 315 x 300 cm

Codice componente: F17

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	8,70	0,75	23,40	4,22	3,49		4,162

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,16

Considerando inoltre 12,30 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,23

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F14 Uglass 225 x 165 cm

Codice componente: F18

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	3,71	0,00	11,10	4,22	3,49		4,220

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,22

Considerando inoltre 7,80 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

0,23

TRASMITTANZA TOTALE (W/m²K)

4,33

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Facciata continua F 15 315 x 255 cm

Codice componente: F20

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	7,20	0,83	26,40	4,22	3,49		4,144

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,15

Considerando inoltre 11,40 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,22

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Porta distribuzione pasti F18 Vs 90 x 250 cm

Codice componente: F22

I	Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
		m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
	1	1,84	0,41	7,80	4,22	3,49		4,086

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,09

Considerando inoltre 6,80 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,24

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Porta aula musica F20 Vs 130 x 220 cm Codice componente: F23

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	2,20	0,66	8,40	4,22	3,49		4,050

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,25

0,24

TRASMITTANZA TOTALE (W/m²K)

4,06

Considerando inoltre 7,00 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA TOTALE (W/m²K)

4,18

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Portafinestra F2a -F3a 100 x 320 cm

Codice componente: F24

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	2,61	0,59	9,40	4,22	3,49		4,085

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,09

Considerando inoltre 8,40 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,22

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestratura F2b - F3b 200 x 255 cm

Codice componente: F26

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	4,56	0,54	17,20	4,22	3,49		4,142

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,14

Considerando inoltre 9,10 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,23

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Portafinestra F7a 120 x 320 cm

Codice componente: F27

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	3,19	0,65	10,20	4,22	3,49		4,096

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,10

Considerando inoltre 8,80 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,21

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestratura F7b 180 x 255 cm Codice componente: F28

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	4,08	0,51	16,40	4,22	3,49		4,138

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,15

Considerando inoltre 8,70 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24

TOTALE (W/m²K)

4,24

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO

secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestratura ingresso F10 406 x 300 cm

Codice componente: F29

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	10,50	1,68	31,80	4,22	3,49		4,119

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,12

Considerando inoltre 14,12 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,18

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO

secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F 16a 310 x 80 cm Codice componente: F30

I	Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
		m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
	1	2,06	0,42	10,08	4,22	3,50		4,098

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

0,23

TRASMITTANZA TOTALE (W/m²K)

4,10

Considerando inoltre 7,80 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA TOTALE (m²K/W)

TRASMITTANZA TOTALE (W/m²K)

4,26

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Portafinestra F16b 130 x 220 cm

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	2,20	0,66	8,40	4,22	3,49		4,050

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Codice componente: F31

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,25

TRASMITTANZA TOTALE (W/m²K)

4,06

Considerando inoltre 7,00 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,18

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI DELL' INVOLUCRO secondo UNI/TS 11300-1 - UNI EN ISO 10077 e UNI EN ISO 6946

Tipo componente: Finestra F5 520 x 110 Codice componente: F32

Nr.	Ag	Af	Lg	Ug	Uf	UI	Uw
	m²	m²	m	W/m²K	W/m²K	W/mK	W/m²K
1	5,01	0,71	16,02	4,22	3,49		4,129

Resistenza unitaria superficiale interna

0,138

Conduttanza unitaria superficiale interna

7,27

Resistenza unitaria superficiale esterna

0,093

Conduttanza unitaria superficiale esterna

10,73

RESISTENZA TERMICA

TOTALE (m²K/W)

0,24

TRASMITTANZA TOTALE (W/m²K)

4,13

Considerando inoltre 12,60 m di ponte termico con KI = 0,05 W/mK si ottiene:

RESISTENZA TERMICA

TOTALE (m²K/W)

TRASMITTANZA 0,24 TOTALE (W/m²K)

4,24

Simbologia: Ag Area del vetro Ag Af Area del telaio

Perimetro della superficie vetrata

Trasmittanza termica centrale dell' elemento vetrato

Lg Ug Uf Ul

Trasmittanza termica del telaio Trasmittanza lineica (nulla in caso di vetro singolo)

Trasmittanza termica totale del serramento

CALCOLO DEL FABBISOGNO DI POTENZA TERMICA DELL' EDIFICIO PER RISCALDAMENTO INVERNALE

secondo UNI EN 12831

Verifica di rispondenza alla Legge 10/91 e DPR 412/93

Edificio : Scuola Elementare Muratori Succ. Antonelli

Via Vezzolano 20

Committente :

Progettista : ***

Dati climatici della località:

Comune : TORINO

Provincia : TO

Altitudine : 239 m slm

Gradi giorno : 2617 Zona climatica : E

Velocità max del vento : 4 m/s
Temp. esterna di progetto : -8,0 °C
Temp. interna di progetto : 20 °C

Dati geometrici dell' edificio:

Coefficienti di esposizione:

Nord = 1,20

Nord-Ovest = 1,15 Nord-Est = 1,20

Ovest = 1,10 Est = 1,15

Sud-Ovest = 1,05 Sud-Est = 1,10

Sud = 1,00

RIASSUNTO DELLE DISPERSIONI DELL' EDIFICIO.

Dispersioni dei componenti finestrati.

		U	Sup. tot.	T.est.	Tipo	Pd	%
Cod	Descrizione	W/m²K	m²	°C		W	Ptot
F1	Finestratura F1 300 x 255 cm VS	5,68	650,25	-8,0	Т	116008	20,1
F4	Finestra F4 Vs 300 x 100 cm	5,52	3,00	-8,0	Т	510	0,1
F7	Finestra F6 Vs 100 x 100 cm	5,52	9,00	-8,0	Т	1564	0,3
F10	Finestra F8 Vs 55 x 155 cm	5,46	15,35	-8,0	Т	2580	0,4
F11	Finestra F9 Vs 50 x 70 cm	5,18	8,40	-8,0	Т	1341	0,2
F14	Facciata scale F11 Uglass 650 x 300	5,76	39,00	-8,0	Т	6919	1,2
F16	Facciata continua F12 e F 13 315 x 630 cm	5,73	238,14	-8,0	Т	39913	6,9
F17	Facciata continua F19 Vs 315 x 300 cm	5,78	103,95	-8,0	Т	18736	3,2
F18	Finestra F14 Uglass 225 x 165 cm	5,92	22,28	-8,0	Т	4246	0,7
F20	Facciata continua F 15 315 x 255 cm	5,75	16,07	-8,0	Т	2974	0,5
F22	Porta distribuzione pasti F18 Vs 90 x 250						
	cm	5,73	2,25	-8,0	Т	415	0,1
F24	Portafinestra F2a -F3a 100 x 320 cm	5,71	124,80	-8,0	Τ	22409	3,9
F26	Finestratura F2b - F3b 200 x 255 cm	5,77	214,20	-8,0	Τ	38850	6,7
F27	Portafinestra F7a 120 x 320 cm	5,71	34,56	-8,0	Τ	6262	1,1
F28	Finestratura F7b 180 x 255 cm	5,77	32,13	-8,0	Т	5933	1,0
F29	Finestratura ingresso F10 406 x 300 cm	5,70	48,72	-8,0	Τ	8553	1,5
F30	Finestra F 16a 310 x 80 cm	5,58	4,96	-8,0	Т	872	0,2
F31	Portafinestra F16b 130 x 220 cm	5,64	5,72	-8,0	Τ	1016	0,2
F32	Finestra F5 520 x 110	5,77	22,88	-8,0	Т	4066	0,7
		Totale:	1595,65 m) ²		283167 W	49,0

Dispersioni delle strutture.

		Totale:	5157,15 m	2		191585 W	33,2
S4	Coperture a falde	1,53	1295,65	-8,0	Т	54615	9,5
S2	Terrazze su spazi riscaldati	1,47	191,10	-8,0	Т	7866	1,4
S1	Coperture piane	1,50	109,55	-8,0	Т	4601	0,8
P5	Pavimento interpiano verso locali non riscaldati	1,22	75,69	3,2	U	1551	0,3
P4	Pavimento interpiano verso CT	1,22	46,74	-8,0	U	1597	0,3
P1	Pavimento piano semint su vespaio	1,22	1497,33	-2,4	U	40252	7,0
IVI <i>T</i>	LNR	1,03	138,10	3,2	U	2390	0,4
M7	Mur intonacata cassa vuota 25 cm verso	1,03	90,30	-0,0	U	2004	0,5
M6	Mur intonacata cassa vuota 25 cm verso CT		90,30	-8,0 -8,0	u U	2604	0,6
M5	cm Mur est intonacata cassa vuota 25 cm	1,54 1,13	575,26 104,33	-8,0 -8,0	T T	27724 3701	4,8 0,6
M4	Murature sottofinestra aule intonacate 18	4.54	F7F 00	0.0	_	07704	4.0
M3	Muratura bagni verso cavedio	1,96	145,84	-8,0	Т	8811	1,5
M2	Mur est paramano cassa vuota 25 cm	1,33	332,10	-8,0	T	13275	2,3
M1	Mur est paramano cassa vuota 40 cm	1,33	555,15	-8,0	Τ	22598	3,9
Cod.	Descrizione	W/m²K	m²	°C		W	Ptot
		U	Sup. tot.	T.est.	Tipo	Pd	%

Dispersioni dei ponti termici lineari.

		KI	L tot.	Sup. tot.	T.est.	Tipo	Pd	%
Cod.	Descrizione	W/mK	m	m²	°C		W	Ptot
Z1	P.T. di pilastro	0,90	1662,50	332,50	-8,0	Т	46075	8,0
Z3	P.T. d'angolo convesso	0,10	1074,20	161,13	-8,0	Т	3312	0,6
Z4	P.T. balconi, poggioli	0,80	7,02	1,05	-8,0	Т	173	0,0
Z5	P.T. solette intermedie	0,80	2159,08	323,86	-8,0	Τ	53322	9,2
		Totale:		818,55 m	l ²		102882 W	17,8
		Totale:		7571,34 m) ²		577634 W	100,0

VALORI INDICE

Trasmittanza media globale	Pt	/(Sup.tot. >	(dT)		
	577634	/(7571,34	x 28)	= 2,725	W/m²K
Valori riferiti al volume lordo di 18539,5	m³				
Ricambio d' aria medio:					
Pv /(0,34 x V x d	T) = 8745	55 / (0,34	x 18539,5 x 28) = 0,496	Vol/h
Potenza volumica = (Pt + Pv)/	V = (577	634 + 87455)	/ 18539,5	= 35,9	W/m³
Valori riferiti al volume netto di 15324,0 i	m³				
Ricambio d' aria medio:					
Pv /(0,34 x V x d	T) = 8745	55 / (0,34	x 15324,0 x 28) = 0,599	Vol/h
Potenza volumica = (Pt + Pv)/	V = (577	634 + 87455)	/ 15324,0	= 43,4	W/m³

CALCOLO DEL FABBISOGNO DI ENERGIA UTILE INVERNALE DELL' EDIFICIO

(Stagione convenzionale)

secondo UNI EN ISO 13790 e UNI/TS 11300-1

Edificio : Scuola Elementare Muratori Succ. Antonelli

Via Vezzolano 20

Committente

Progettista : ***

Dati climatici della località:

Comune : TORINO

Provincia : TO

Altitudine : 239 m slm

Gradi giorno : 2617 Zona climatica : E

Velocità media del vento : 0,8 m/s
Temp. esterna di progetto : -8,0 °C
Temp. interna di progetto : 20 °C

Dati geometrici dell' edificio:

Temperature medie mensili (°C):

GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
0,4	3,2	8,2	12,7	16,7	21,1	23,3	22,6	18,8	12,6	6,8	2,0

	Irradiazio	one med	lia mensi	le (MJ/m	² giorno)	45° 7'	Latit. No	rd. 7°	43' Lo	ngit. Est	•	
	GEN	FEB	MAR	APR	MAG	GIU	LUG	AGO	SET	OTT	NOV	DIC
OR	5,0	7,8	12,2	17,0	19,6	21,5	23,5	18,5	13,5	9,3	5,5	4,7
N NE E S S S O NO	1,8 1,9 4,1 7,1 9,0 7,1 4,1 1,9	2,5 3,2 6,1 9,1 10,8 9,1 6,1 3,2	3,7 5,5 8,9 11,3 11,9 11,3 8,9 5,5	5,5 8,4 11,7 12,4 11,2 12,4 11,7 8,4	7,6 10,5 12,9 12,0 9,8 12,0 12,9 10,5	9,1 11,8 13,9 12,1 9,5 12,1 13,9 11,8	9,1 12,6 15,4 13,7 10,6 13,7 15,4 12,6	6,3 9,4 12,5 12,5 10,7 12,5 12,5 9,4	4,2 6,3 9,6 11,3 11,2 11,3 9,6 6,3	2,9 3,9 7,1 10,0 11,6 10,0 7,1 3,9	1,9 2,2 4,4 7,3 9,2 7,3 4,4 2,2	1,5 1,7 4,0 7,4 9,6 7,4 4,0 1,7

DISTINTA DEI COMPONENTI DISPERDENTI DELL' EDIFICIO

STRUTTURE

	Denominazione	U medio	Temp. est.	Tipo strutt.
		W/m²K	°C	
M1	Mur est paramano cassa vuota 40 cm	1,26	-8,0	Т
M2	Mur est paramano cassa vuota 25 cm	1,26	-8,0	Т
МЗ	Muratura bagni verso cavedio	1,80	-8,0	Т
M4	Murature sottofinestra aule intonacate 18 cm	1,44	-8,0	T
M5	Mur est intonacata cassa vuota 25 cm	1,07	-8,0	Т
M6	Mur intonacata cassa vuota 25 cm verso CT	1,03	-8,0	U
M7	Mur intonacata cassa vuota 25 cm verso LNR	1,03	3,2	U
P1	Pavimento piano semint su vespaio	1,22	-2,4	U
P4	Pavimento interpiano verso CT	1,22	-8,0	U
P5	Pavimento interpiano verso locali non riscaldati	1,22	3,2	U
S1	Coperture piane	1,40	-8,0	Т
S2	Terrazze su spazi riscaldati	1,38	-8,0	Т
S4	Coperture a falde	1,53	-8,0	T

PONTI TERMICI

	Denominazione	KI medio W/mK	Temp. est. °C	Tipo strutt.
Z1	P.T. di pilastro	0,90	-8,0	Т
Z3	P.T. d'angolo convesso	0,10	-8,0	Т
Z4	P.T. balconi, poggioli	0,80	-8,0	Т
Z5	P.T. solette intermedie	0,80	-8,0	Т

SERRAMENTI

	Denominazione	U medio	T. est.	Tipo str.	G	Fi	CF
		W/m²K	°C			%	
F1	Finestratura F1 300 x 255 cm VS	4,14	-8,0	Т	0,85	89	0,45
F4	Finestra F4 Vs 300 x 100 cm	4,06	-8,0	Т	0,85	77	0,45
F7	Finestra F6 Vs 100 x 100 cm	4,05	-8,0	Т	0,85	77	0,45
F10	Finestra F8 Vs 55 x 155 cm	4,02	-8,0	Т	0,85	73	0,45
F11	Finestra F9 Vs 50 x 70 cm	3,87	-8,0	Т	0,85	51	0,45
F14	Facciata scale F11 Uglass 650 x 300	4,19	-8,0	Т	0,85	95	1,00
F15	Facciata scale F17 Uglass 650 x 200	4,18	-8,0	Т	0,85	94	1,00
F16	Facciata continua F12 e F 13 315 x 630 cm	4,20	-8,0	Т	0,85	90	1,00
F17	Facciata continua F19 Vs 315 x 300 cm	4,23	-8,0	Т	0,85	92	1,00
F18	Finestra F14 Uglass 225 x 165 cm	4,33	-8,0	Т	0,85	100	1,00
F20	Facciata continua F 15 315 x 255 cm	4,22	-8,0	Т	0,85	90	1,00
F22	Porta distribuzione pasti F18 Vs 90 x 250 cm	4,24	-8,0	Т	0,85	82	1,00
F23	Porta aula musica F20 Vs 130 x 220 cm	4,18	-8,0	Т	0,85	77	1,00
F24	Portafinestra F2a -F3a 100 x 320 cm	4,22	-8,0	Т	0,85	82	0,45
F26	Finestratura F2b - F3b 200 x 255 cm	4,23	-8,0	Т	0,85	89	0,45
F27	Portafinestra F7a 120 x 320 cm	4,21	-8,0	Т	0,85	83	0,45
F28	Finestratura F7b 180 x 255 cm	4,24	-8,0	Т	0,85	89	0,45
F29	Finestratura ingresso F10 406 x 300 cm	4,18	-8,0	Т	0,85	86	1,00
F30	Finestra F 16a 310 x 80 cm	4,26	-8,0	Т	0,85	83	1,00
F31	Portafinestra F16b 130 x 220 cm	4,18	-8,0	Т	0,85	77	1,00
F32	Finestra F5 520 x 110	4,24	-8,0	Т	0,85	88	1,00

Simbologia

Tipo strutt. T = Perdita specifica per trasmissione verso l' esterno.

G = Perdita specifica per trasmissione verso il terreno.

U = Perdita specifica per trasmissione verso zone adiacenti non riscaldate.

 ${\sf A} = {\sf Perdita} \ {\sf specifica} \ {\sf per} \ {\sf trasmissione} \ {\sf verso} \ {\sf zone} \ {\sf adiacenti} \ {\sf a} \ {\sf temperatura} \ {\sf costante}.$

N = Perdita specifica per trasmissione verso appartamenti occupati da vicini.

G = fattore di trasmissione della radiazione solare.

Fi = percentuale della superficie vetrata rispetto alla superficie del componente.

CF = fattore tendaggi.

Ht - Perdite di calore specifiche per trasmissione attraverso le strutture. Ht = $\sum (KI * L) + \sum (U * S)$

1 PROSPETTO: NORD Temp. interna = 18 °C

				Н	t (W/K) =	136,49
Z5	P.T. solette intermedie	0,80	19,32			15,46
Z3	P.T. d'angolo convesso	0,10	31,20			3,12
Z1	P.T. di pilastro	0,90	46,80			42,12
M5	Mur est intonacata cassa vuota 25 cm			1,07	2,20	2,36
M2	Mur est paramano cassa vuota 25 cm			1,26	55,20	69,38
F7	Finestra F6 Vs 100 x 100 cm			4,05	1,00	4,05
		W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj

2 PROSPETTO: NORD Temp. interna = 20 °C

	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj
		W/mK	m	W/m^2K	m²	W/K
F1	Finestratura F1 300 x 255 cm VS			4,14	30,60	126,68
F7	Finestra F6 Vs 100 x 100 cm			4,05	5,00	20,25
F10	Finestra F8 Vs 55 x 155 cm			4,02	7,67	30,84
F11	Finestra F9 Vs 50 x 70 cm			3,87	4,20	16,25
F24	Portafinestra F2a -F3a 100 x 320 cm			4,22	3,20	13,50
F26	Finestratura F2b - F3b 200 x 255 cm			4,23	5,10	21,57
F29	Finestratura ingresso F10 406 x 300					
	cm			4,18	24,36	101,82
F32	Finestra F5 520 x 110			4,24	11,44	48,51
M1	Mur est paramano cassa vuota 40 cm			1,26	258,27	324,61
M2	Mur est paramano cassa vuota 25 cm			1,26	107,85	135,56
МЗ	Muratura bagni verso cavedio			1,80	69,19	124,48
M4	Murature sottofinestra aule intonacate					
	18 cm			1,44	10,79	15,49
M5	Mur est intonacata cassa vuota 25 cm			1,07	36,97	39,72
Z1	P.T. di pilastro	0,90	398,70			358,83
Z3	P.T. d'angolo convesso	0,10	221,30)		22,13
Z5	P.T. solette intermedie	0,80	397,62	!		318,10
				ŀ	It (W/K) =	1718,34

3 PROSPETTO: EST

Temp. interna = 18 °C

	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj
		W/mK	m	W/m²K	m²	W/K
F16	Facciata continua F12 e F 13 315 x					
	630 cm			4,20	119,07	500,09
M4	Murature sottofinestra aule intonacate					
	18 cm			1,44	25,02	35,94
Z1	P.T. di pilastro	0,90	78,00			70,20
Z3	P.T. d'angolo convesso	0,10	23,40)		2,34
Z5	P.T. solette intermedie	0,80	43,22	<u>.</u>		34,58
				Н	It (W/K) =	643,15

4 PROSPETTO : EST

Temp. interna = 20 °C

	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj
		W/mK	m	W/m²K	m²	W/K
F1	Finestratura F1 300 x 255 cm VS			4,14	298,35	1235,17
F17	Facciata continua F19 Vs 315 x 300					
	cm			4,23	28,35	119,92
F18	Finestra F14 Uglass 225 x 165 cm			4,33	22,28	96,45
F20	Facciata continua F 15 315 x 255 cm			4,22	16,07	67,79
F22	Porta distribuzione pasti F18 Vs 90 x					
	250 cm			4,24	2,25	9,54
F24	Portafinestra F2a -F3a 100 x 320 cm			4,22	51,20	216,06
F26	Finestratura F2b - F3b 200 x 255 cm			4,23	86,70	366,74
F27	Portafinestra F7a 120 x 320 cm			4,21	23,04	97,00
F28	Finestratura F7b 180 x 255 cm			4,24	27,54	116,77
F30	Finestra F 16a 310 x 80 cm			4,26	2,48	10,56
F31	Portafinestra F16b 130 x 220 cm			4,18	2,86	11,95
M2	Mur est paramano cassa vuota 25 cm			1,26	7,21	9,07
М3	Muratura bagni verso cavedio			1,80	6,08	10,94
M4	Murature sottofinestra aule intonacate					
	18 cm			1,44	260,30	373,88
M5	Mur est intonacata cassa vuota 25 cm			1,07	32,83	35,27
Z1	P.T. di pilastro	0,90	285,20			256,68
Z3	P.T. d'angolo convesso	0,10	262,50)		26,25
Z5	P.T. solette intermedie	0,80	552,04			441,63
				F	It (W/K) =	3501,67

5 PROSPETTO: SUD

Temp. interna = 18 °C

	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj
		W/mK	m	W/m^2K	m²	W/K
M2	Mur est paramano cassa vuota 25 cm			1,26	83,25	104,64
Z1	P.T. di pilastro	0,90	46,80			42,12
Z3	P.T. d'angolo convesso	0,10	15,60			1,56
Z5	P.T. solette intermedie	0,80	25,32			20,26
				H	Ht (W/K) =	168,58

6 PROSPETTO: SUD

Temp. interna = 20 °C

Z5	P.T. solette intermedie	0,80	389,68	}		311,74
Z3	P.T. d'angolo convesso	0,10	221,30)		22,13
Z1	P.T. di pilastro	0,90	385,30)		346,77
M5	Mur est intonacata cassa vuota 25 cm			1,07	32,33	34,73
	18 cm			1,44	11,44	16,43
M4	Murature sottofinestra aule intonacate					
МЗ	Muratura bagni verso cavedio			1,80	70,56	126,95
M2	Mur est paramano cassa vuota 25 cm			1,26	65,05	81,76
M1	Mur est paramano cassa vuota 40 cm			1,26	296,88	373,14
F32	Finestra F5 520 x 110			4,24	11,44	48,51
	cm			4,18	24,36	101,82
F29	Finestratura ingresso F10 406 x 300					
F11	Finestra F9 Vs 50 x 70 cm			3,87	4,20	16,25
F10	Finestra F8 Vs 55 x 155 cm			4,02	7,67	30,84
F7	Finestra F6 Vs 100 x 100 cm			4,05	3,00	12,15
F1	Finestratura F1 300 x 255 cm VS			4,14	38,25	158,35
		W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj

7 PROSPETTO: OVEST

Temp. interna = 18 °C

	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj
		W/mK	m	W/m^2K	m²	W/K
F16	Facciata continua F12 e F 13 315 x					
	630 cm			4,20	119,07	500,09
M4	Murature sottofinestra aule intonacate					
	18 cm			1,44	25,02	35,94
Z1	P.T. di pilastro	0,90	78,00			70,20
Z3	P.T. d'angolo convesso	0,10	23,40			2,34
Z5	P.T. solette intermedie	0,80	43,22			34,58
				F	It (W/K) =	643,15

8 PROSPETTO: OVEST

Temp. interna = 20 °C

	1 . 1. Solotte littermedie	0,00	J-10,02		t (W/K) =	3711,29
Z5	P.T. solette intermedie	0,80	548,62			438,90
Z4	P.T. balconi, poggioli	0,10	7,02			5,62
Z3	P.T. d'angolo convesso	0,10	192,30			19,23
Z1	P.T. di pilastro	0,90	343,70	1		309,33
141-1	18 cm			1,44	242,76	348,68
M4	Murature sottofinestra aule intonacate			.,_0	. 5,50	,0
M2	Mur est paramano cassa vuota 25 cm			1,26	13,53	17,01
F31	Portafinestra F16b 130 x 220 cm			4,18	2,86	11,95
F30	Finestra F 16a 310 x 80 cm			4,26	2,48	10,56
F28	Finestratura F7b 180 x 255 cm			4,24	4,59	19,46
F27	Portafinestra F7a 120 x 320 cm			4,21	11,52	48,50
F26	Finestratura F2b - F3b 200 x 255 cm			4,23	122,40	517,75
F24	Portafinestra F2a -F3a 100 x 320 cm			4,22	70,40	297,09
	cm			4,23	75,60	319,79
F17	Facciata continua F19 Vs 315 x 300					
F14	Facciata scale F11 Uglass 650 x 300			4,19	39,00	163,41
F4	Finestra F4 Vs 300 x 100 cm			4,06	3,00	12,18
F1	Finestratura F1 300 x 255 cm VS			4,14	283,05	1171,83
		W/mK	m	W/m²K	m²	W/k
	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	L

9 STRUTTURE ORIZZONTALI

Temp. interna = 18 °C

				Н	It (W/K) =	444,62
S4	Coperture a falde			1,53	290,98	444,62
		W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj

10 STRUTTURE ORIZZONTALI

Temp. interna = 20 °C

S4	Coperture a falde			1,53	1004,67 : (W/K) =	1535,14 1952,40
S2	Terrazze su spazi riscaldati			1,38	191,10	263,36
S1	Coperture piane			1,40	109,55	153,90
		W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	KI medio Lungh. U medio			Sup.	Lj

11 PARETI INTERNE

Temp. interna = 20 °C

				Ht totale	e (W/K) =	14721,61
				H	t (W/K) =	120,35
Z5	P.T. solette intermedie	0,80	140,04			112,03
Z3	P.T. d'angolo convesso	0,10	83,20			8,32
		W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	KI medio	Lungh.	U medio	Sup.	Lj

$\mbox{\rm Hu\,}$ - $\mbox{\rm Perdite}$ di calore specifiche verso ambienti non riscaldati.

 $Hu = \sum (\alpha * KI * L) + \sum (\alpha * U * S)$

9 STRUTTURE ORIZZONTALI

Temp. interna = 18 °C

					Н	u (W/K) =	267,52
P1	Pavimento piano semint su vespaio	0,80			1,22	273,43	267,52
			W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	α	KI medio	Lungh.	U medio	Sup.	Lj

10 STRUTTURE ORIZZONTALI

Temp. interna = 20 °C

					Ηι	ı (W/K) =	1310,16
	riscaldati	0,60			1,22	75,69	55,54
P5	Pavimento interpiano verso locali non						
P4	Pavimento interpiano verso CT	1,00			1,22	46,74	57,16
P1	Pavimento piano semint su vespaio	0,80			1,22	1223,90	1197,46
			W/mK	m	W/m²K	m²	W/K
	Strutture disperdenti	α	KI medio	Lungh.	U medio	Sup.	Lj

11 PARETI INTERNE

Temp. interna = 20 °C

					Hu	(W/K) =	177,67
M7	Mur intonacata cassa vuota 25 cm verso LNR	0,60			1,03	138,10	85,02
M6	Mur intonacata cassa vuota 25 cm verso CT	1,00			1,03	90,30	92,65
	Strutture disperdenti	α	KI medio L W/mK	ungh. m	U medio W/m²K	Sup. m²	W/k

11 4-4-1- (NI/IZ)	1755,35
Hu totale (W/K) =	1 / 55 35
	1700,00

Hg - Perdite di calore specifiche verso il terreno.

$$Hg = \sum (KI * L) + \sum (U * S)$$

NESSUNA STRUTTURA.

Ha - Perdite di calore specifiche verso ambienti adiacenti a temperatura costante.

$$Ha = \sum (KI * L) + \sum (U * S)$$

NESSUNA STRUTTURA.

Hv - Perdite di calore specifiche per ventilazione.

$$Hv = \sum (0.34 * n * V * (1 - \eta r))$$

			Hv totale (V	V/K)	1563,04
VOLUME GLOBALE	20,0	13295,9	0,30	0	1356,18
VOLUME GLOBALE	18,0	2028,1	0,30	0	206,86
	°C	m³	Vol/h	%	W/K
Descrizione volume	T. int.	Volume	Ricambio medio	Recuper.	Hv

APPORTI SOLARI

Superfici vetrate

Serramento	Esp.	G	Fi	CF	Sup.	
			%		m²	
F1 Finestratura F1 300 x 255 cm VS	N	0,85	89	0,45	30,60	
F7 Finestra F6 Vs 100 x 100 cm	Ν	0,85	77	0,45	4,00	
F7 Finestra F6 Vs 100 x 100 cm	Ν	0,85	77	0,45	2,00	
F10 Finestra F8 Vs 55 x 155 cm	Ν	0,85	73	0,45	2,56	
F10 Finestra F8 Vs 55 x 155 cm	Ν	0,85	73	0,45	5,12	
F11 Finestra F9 Vs 50 x 70 cm	Ν	0,85	51	0,45	1,40	
F11 Finestra F9 Vs 50 x 70 cm	Ν	0,85	51	0,45	1,40	
F11 Finestra F9 Vs 50 x 70 cm	Ν	0,85	51	0,45	1,40	
F24 Portafinestra F2a -F3a 100 x 320 cm	Ν	0,85	82	0,45	3,20	
F26 Finestratura F2b - F3b 200 x 255 cm	N	0,85	89	0,45	5,10	
F29 Finestratura ingresso F10 406 x 300 cm	N	0,85	86	1,00	24,36	
F32 Finestra F5 520 x 110	Ν	0,85	88	1,00	11,44	
F1 Finestratura F1 300 x 255 cm VS	Е	0,85	89	0,45	30,60	
F1 Finestratura F1 300 x 255 cm VS	Е	0,85	89	0,45	267,75	
F16 Facciata continua F12 e F 13 315 x 630 cm	Е	0,85	90	1,00	119,07	
F17 Facciata continua F19 Vs 315 x 300 cm	Е	0,85	92	1,00	28,35	
F18 Finestra F14 Uglass 225 x 165 cm	Е	0,85	100	1,00	7,43	
F18 Finestra F14 Uglass 225 x 165 cm	Е	0,85	100	1,00	14,85	
F20 Facciata continua F 15 315 x 255 cm	E	0,85	90	1,00	16,07	
F22 Porta distribuzione pasti F18 Vs 90 x 250 cm	E	0,85	82	1,00	2,25	
F24 Portafinestra F2a -F3a 100 x 320 cm	E	0,85	82	0,45	51,20	
F26 Finestratura F2b - F3b 200 x 255 cm	E	0,85	89	0,45	86,70	
F27 Portafinestra F7a 120 x 320 cm	E	0,85	83	0,45	7,68	
F27 Portafinestra F7a 120 x 320 cm	E	0,85	83	0,45	15,36	
F28 Finestratura F7b 180 x 255 cm	E	0,85	89	0,45	9,18	
F28 Finestratura F7b 180 x 255 cm	E	0,85	89	0,45	18,36	
F30 Finestra F 16a 310 x 80 cm	E	0,85	83	1,00	2,48	
F31 Portafinestra F16b 130 x 220 cm	E	0,85	77	1,00	2,86	
F1 Finestratura F1 300 x 255 cm VS	S	0,85	89	0,45	38,25	
F7 Finestra F6 Vs 100 x 100 cm	S	0,85	77	0,45	2,00	
F7 Finestra F6 Vs 100 x 100 cm	S	0,85	77	0,45	1,00	
F10 Finestra F8 Vs 55 x 155 cm	S	0,85	73	0,45	2,56	
F10 Finestra F8 Vs 55 x 155 cm	S	0,85	73	0,45	5,12	
F11 Finestra F9 Vs 50 x 70 cm	S	0,85	51	0,45	1,40	
F11 Finestra F9 Vs 50 x 70 cm	S	0,85	51	0,45	1,40	
F11 Finestra F9 Vs 50 x 70 cm	S	0,85	51	0,45	1,40	
F29 Finestratura ingresso F10 406 x 300 cm	S	0,85	86	1,00	24,36	
F32 Finestratura ingresso F 10 400 x 300 cm	S	0,85	88	1,00	11,44	
F1 Finestratura F1 300 x 255 cm VS	0	0,85	89	0,45	260,10	
F1 Finestratura F1 300 x 255 cm VS	0	0,85	89	0,45	200,10	
F4 Finestra F4 Vs 300 x 100 cm	0	0,85	77		3,00	
				0,45		
F14 Facciata scale F11 Uglass 650 x 300	0	0,85	95	1,00	39,00	
F16 Facciata continua F12 e F 13 315 x 630 cm	0	0,85	90	1,00	119,07	
F17 Facciata continua F19 Vs 315 x 300 cm	0	0,85	92	1,00	75,60	
F24 Portafinestra F2a -F3a 100 x 320 cm	0	0,85	82	0,45	19,20	
F24 Portafinestra F2a -F3a 100 x 320 cm	0	0,85	82	0,45	51,20	
F26 Finestratura F2b - F3b 200 x 255 cm	0	0,85	89	0,45	40,80	
F26 Finestratura F2b - F3b 200 x 255 cm	0	0,85	89	0,45	81,60	
F27 Portafinestra F7a 120 x 320 cm	0	0,85	83	0,45	11,52	
F28 Finestratura F7b 180 x 255 cm	0	0,85	89	0,45	4,59	
F30 Finestra F 16a 310 x 80 cm	0	0,85	83	1,00	2,48	
F31 Portafinestra F16b 130 x 220 cm	0	0,85	77	1,00	2,86	
		Tota	le m²		1595,67]

Simbologia

G = fattore di trasmissione della radiazione solare.

Fi = percentuale della superficie vetrata rispetto alla superficie del componente.

CF = fattore tendaggi.

APPORTI SOLARI

Superfici opache

		Superfici op	acne			
	Struttura	Esp.	α	he	Sup.	
				W/m^2K	m²	
M1	Mur est paramano cassa vuota 40 cm	N	0,9	11,66	66,10	
	Ponti termici collegati: somma(lungh * U) =	148,77				
M1	Mur est paramano cassa vuota 40 cm	Ν	0,9	11,66	192,17	
	Ponti termici collegati: somma(lungh * U) =	276,06				
M2	Mur est paramano cassa vuota 25 cm	N	0,9	11,66	21,24	
	Ponti termici collegati: somma(lungh * U) =	66,54				
M2	Mur est paramano cassa vuota 25 cm	Ν	0,9	11,66	139,09	
	Ponti termici collegati: somma(lungh * U) =	158,70				
M2	Mur est paramano cassa vuota 25 cm	Ν	0,9	11,66	2,72	
М3	Muratura bagni verso cavedio	Ν	0,6	11,66	5,00	
М3	Muratura bagni verso cavedio	N	0,6	11,66	5,00	
М3	Muratura bagni verso cavedio	N	0,6	11,66	59,19	
	Ponti termici collegati: somma(lungh * U) =					
M4	Murature sottofinestra aule intonacate 18 c		0,6	11,66	1,69	
	Ponti termici collegati: somma(lungh * U) =	•				
M4	Murature sottofinestra aule intonacate 18 c		0,6	11,66	9,10	
M5	Mur est intonacata cassa vuota 25 cm	N	0,9	11,66	30,37	
	Ponti termici collegati: somma(lungh * U) =					
	Mur est intonacata cassa vuota 25 cm	N	0,9	11,66	8,80	
M2	Mur est paramano cassa vuota 25 cm	Е	0,9	11,66	6,12	
	Ponti termici collegati: somma(lungh * U) =					
М3	Muratura bagni verso cavedio	E	0,6	11,66	6,08	
	Ponti termici collegati: somma(lungh * U) =					
M4	Murature sottofinestra aule intonacate 18 c		0,6	11,66	271,95	
	Ponti termici collegati: somma(lungh * U) =					
M4	Murature sottofinestra aule intonacate 18 c		0,6	11,66	3,23	
	Ponti termici collegati: somma(lungh * U) =					
	Murature sottofinestra aule intonacate 18 c		0,6	11,66	10,14	
M5	Mur est intonacata cassa vuota 25 cm	E	0,9	11,66	23,58	
	Ponti termici collegati: somma(lungh * U) =	27,36				
	Mur est intonacata cassa vuota 25 cm	E	0,9	11,66	6,97	
M5	Mur est intonacata cassa vuota 25 cm	Е	0,9	11,66	2,27	
	Ponti termici collegati: somma(lungh * U) =					
M1	Mur est paramano cassa vuota 40 cm	S	0,9	11,66	230,78	
	Ponti termici collegati: somma(lungh * U) =					
M1	Mur est paramano cassa vuota 40 cm	S	0,9	11,66	66,10	
	Ponti termici collegati: somma(lungh * U) =					
M2	Mur est paramano cassa vuota 25 cm	S	0,9	11,66	103,30	
	Ponti termici collegati: somma(lungh * U) =	•				
M2	Mur est paramano cassa vuota 25 cm	S	0,9	11,66	42,28	
	Ponti termici collegati: somma(lungh * U) =					
	Mur est paramano cassa vuota 25 cm	S	0,9	11,66	2,72	
	Muratura bagni verso cavedio	S	0,6	11,66	5,00	
	Muratura bagni verso cavedio	S	0,6	11,66	5,00	
М3	Muratura bagni verso cavedio	S	0,6	11,66	60,56	
	Ponti termici collegati: somma(lungh * U) =			44.00		
M4	Murature sottofinestra aule intonacate 18 c		0,6	11,66	11,44	
p	Ponti termici collegati: somma(lungh * U) =		2.2	44.00	07.00	
M5	Mur est intonacata cassa vuota 25 cm	S	0,9	11,66	27,93	
p	Ponti termici collegati: somma(lungh * U) =		2.2	44.00	4.40	
	Mur est intonacata cassa vuota 25 cm	S	0,9	11,66	4,40	
M2	Mur est paramano cassa vuota 25 cm	0	0,9	11,66	12,44	
R # 4	Ponti termici collegati: somma(lungh * U) =		2.2	44.00	F 05	
IVI4	Murature sottofinestra aule intonacate 18 c	m O	0,6	11,66	5,85	

M4 Murature sottofinestra aule intonacate 18 cm O	0,6	11,66	241,13
Ponti termici collegati: somma(lungh * U) = 871,66			
M4 Murature sottofinestra aule intonacate 18 cm O	0,6	11,66	20,80

APPORTI SOLARI

S1	Coperture piane	OR	0,9	11,66	109,55	
S2	Terrazze su spazi riscaldati	OR	0,9	11,66	191,10	
S4	Coperture a falde	OR	0,9	10,00	494,81	
S4	Coperture a falde	OR	0,9	10,00	800,84	
			Totale m ²		3306,84	

Simbologia

 α = fattore di assorbimento della radiazione solare.

he = coefficiente liminare di scambio termico esterno.

APPORTI INTERNI

	VOLUME GLODALE	0,8 Totale appor		3539,8
2	VOLUME GLOBALE	0.0	3872.17	3097.7
1	VOLUME GLOBALE	1,7	260,01	442,0
zona		W/m²	m²	W
Numero	o Descrizione	Apporti	Superficie	Pi

Riassunto della stagione di riscaldamento

PERDITE

Mese	Giorni	Te	Qt+Qr	Qgr	Qu	Qa	Qv	QL
		°C	MJ	MJ	MJ	MJ	MJ	MJ
Ottobre	15,22	11,1	200219	0	19909	0	17852	244344
Novembre	30,44	6,8	564942	0	59380	0	53175	695962
Dicembre	30,44	2,0	750734	0	81475	0	72906	930057
Gennaio	30,44	0,4	812665	0	88840	0	79484	1008092
Febbraio	30,44	3,2	704286	0	75951	0	67973	871536
Marzo	30,44	8,2	510752	0	52936	0	47419	627682
Aprile	15,22	11,6	190336	0	18700	0	16773	231822
Totali:	182,64		3733934	0	397191	0	355582	4609495

APPORTI FABBISOGNO

Totali:	524587	706527	260822			1491936
Aprile	76844	94952	21736	0,804	0,660	193532
Marzo	125636	172103	43470	0,518	0,851	341209
Febbraio	87713	123911	43470	0,270	0,965	255094
Gennaio	61318	85964	43470	0,166	0,989	190752
Dicembre	59928	82064	43470	0,174	0,987	185462
Novembre	65642	93337	43470	0,258	0,968	202449
Ottobre	47506	54196	21736	0,465	0,873	123438
	MJ	MJ	MJ			MJ
Mese	Qse	Qsi	Qi	GLR	ηu	QG

Qh
MJ
130561
497886
746178
818736
622325
318585
78014
3212285

STAGIONE DI RISCALDAMENTO

Inizio	Fine	Durata
15 Ottobre	15 Aprile	182,64 giorni
Energia per dispersioni : (QI - Qv)		4253913 MJ/anno
Energia per ventilazione: (Qv)		355582 MJ/anno
Energia totale - fabbisogno dell' edifi	cio: (Qh)	3212285 MJ/anno

```
Ht * (ti - te) * num.giorni * 86400 * 10<sup>-6</sup>
Qt =
           Fr * or * num.giorni * 86400 * 10-6
Qr =
           (1 - Scherm / 100) * (1 + cos(S)) / 2
Fr =
\Phi r =
           U * Rse * Sup * hr * Δθer
                                                                                               Qse =
                                                                                                           Irr * num.giorni * Ae muri
Qu =
           Hu * (ti - te) * num.giorni * 86400 * 10<sup>-6</sup>
                                                                                               Qsi =
                                                                                                           Irr * num.giorni * Ae vetri
                                                                                                           PI * num.giorni * 86400 * 10<sup>-6</sup>
Qgr =
           Hg * (ti - te) * num.giorni * 86400 * 10-6
                                                                                               Qi =
Qa =
           Ha * (ti - ta) * num.giorni * 86400 * 10-6
                                                                                               GLR =
                                                                                                           (Qsi + Qse + Qi) / QL
QV =
           Hv * (ti - te) * num.giorni * 86400 * 10<sup>-6</sup>
                                                                                               QG =
                                                                                                           Qse + Qsi + Qi
QL =
           Qt + Qr + Qgr + Qu + Qa + Qv
                                                                                               Qh =
                                                                                                           QL - \etau * (Qsi + Qse + Qi)
```

CALCOLO DEL FABBISOGNO DI ENERGIA PRIMARIA

secondo UNI/TS 11300-1, UNI/TS 11300-2

Edificio : Scuola Elementare Muratori Succ. Antonelli

Via Vezzolano 20

Committente

Progettista

Modalità di calcolo: Intero edificio

Modalità di funzionamento dell'impianto:

Funzionamento continuato

Fattore di intermittenza : 100,0 %

Rendimenti riscaldamento

ηr = Rendimento di regolazione medio : 84.9 %

> Climatica (compensazione con sonda esterna) Tipo di regolazione:

 ηe = Rendimento di emissione : 91,0 %

> Tipo di terminale di erogazione: Radiatori a colonne Tipologia di installazione: Parete esterna non isolata (U>0.8 W/m²K)

nd = Rendimento di distribuzione : 90,1 %

> Tipo di impianto: Е

> > Impianto centralizzato con montanti di distribuzione: montanti correnti nell'intercapedine - Isolamento dell'edificio assente - Periodo di

costruzione: prima del 1976

Numero di piani: 4 Isolamento tubazioni: Insufficiente

Delta T di progetto: 80/60 °C

Fattore di riduzione per contabilizzazione (riscaldamento) : 1,00

Mese	giorni	QI	Qg	ηuti	Qh	fattore	Qhvs	ηced	
		(MJ)	(MJ)	%	(MJ)	interm.	(MJ)	%	
Gennaio	30,44	1008092	190752	98,9	818736	1,00	818736	73,9	
Febbraio	30,44	871536	255094	96,5	622325	1,00	622325	69,2	
Marzo	30,44	627682	341209	85,1	318585	1,00	318585	60,3	
Aprile	15,22	231822	193532	66,0	78014	1,00	78014	55,9	
Maggio	0,00	0	0	0,0	0	0	0	0	
Giugno	0,00	0	0	0,0	0	0	0	0	
Luglio	0,00	0	0	0,0	0	0	0	0	
Agosto	0,00	0	0	0,0	0	0	0	0	
Settembre	0,00	0	0	0,0	0	0	0	0	
Ottobre	15,22	244344	123438	87,3	130561	1,00	130561	62,0	
Novembre	30,44	695962	202449	96,8	497886	1,00	497886	69,7	
Dicembre	30,44	930057	185462	98,7	746178	1,00	746178	73,5	

3212285 3212285

Simbologia

QI perdite di energia. Qg apporti gratuiti.

ηuti fattore di utilizzazione degli apporti gratuiti.

Qh fabbisogno energetico utile mensile in funzionamento continuo per riscaldamento ambienti.

Qhvs fabbisogno energetico utile mensile in funzionamento non continuo per riscaldamento ambienti.

interm. fattore di intermittenza.

 ηced $\,$ prodotto dei rendimenti di regolazione, distribuzione ed emissione.

Ottobre	15,22	210633	0	0	0	0	210633	
Settembre	0,00	0	0	0	0	0	0	
Agosto	0,00	0	0	0	0	0	0	
Luglio	0,00	0	0	0	0	0	0	
Giugno	0,00	0	0	0	0	0	0	
Maggio	0,00	0	0	0	0	0	0	
Aprile	15,22	139515	0	0	0	0	139515	
Marzo	30,44	527936	0	0	0	0	527936	
Febbraio	30,44	899308	0	0	0	0	899308	
Gennaio	30,44	1108289	0	0	0	0	1108289	
		(MJ)	(MJ)	(MJ)	(MJ)	(MJ)	(MJ)	
Mese	giorni	risc.	rinn.	sanit.	rinn.	altri	totale	
		Qgn,out	Qp,risc	Qp C	p,sanit.	Qp	Qp	

Simbologia

Qgn,out risc. energia termica mensile fornita dal sistema di produzione per riscaldamento.

Qp risc.,rinn. energia termica mensile da fonte rinnovabile fornita al sistema di produzione per riscaldamento.

Qp sanit. energia termica mensile fornita dal sistema di produzione per acqua calda sanitaria.

Qp sanit.,rinn. energia termica mensile da fonte rinnovabile fornita al sistema di produzione per acqua calda sanitaria.

Qp altri energia termica mensile fornita dal sistema di produzione per altri usi.

Qp totale energia termica mensile totale fornita dal sistema di produzione.

Mese	Q	CP	Pch,on	Pgn,env	Pch,off	FC	ηC	ηgn	ηtu
	(MJ)		%	%	%		%	%	%
Gennaio	1273713	0,00	0,00	0,00	0,00	0,00	90,1	88,0	65,0
Febbraio	1036235	0,00	0,00	0,00	0,00	0,00	84,4	88,0	60,9
Marzo	614221	0,00	0,00	0,00	0,00	0,00	73,6	88,0	53,1
Aprile	165687	0,00	0,00	0,00	0,00	0,00	68,2	88,0	49,2
Maggio	0	0,00	0,00	0,00	0,00	0,00	0.00	0,0	0,0
Giugno	0	0,00	0,00	0,00	0,00	0,00	0.00	0,0	0,0
Luglio	0	0,00	0,00	0,00	0,00	0,00	0.00	0,0	0,0
Agosto	0	0,00	0,00	0,00	0,00	0,00	0.00	0,0	0,0
Settembre	0	0,00	0,00	0,00	0,00	0,00	0.00	0,0	0,0
Ottobre	246502	0,00	0,00	0,00	0,00	0,00	75,6	88,0	54,5
Novembre	826118	0,00	0,00	0,00	0,00	0,00	85,0	88,0	61,3
Dicembre	1167219	0,00	0,00	0,00	0,00	0,00	89,7	88,0	64,7

5329695

Simbologia

Q energia primaria mensile richiesta dal generatore (Q risc. + Q sanit. + Q altri).

CP fattore di carico utile

Pch,on perdite termiche percentuali al camino a bruciatore funzionante.

Pgn,env perdite termiche percentuali verso l' ambiente attraverso l' involucro.

Pch,off perdite termiche percentuali al camino a bruciatore spento.

FC fattore di carico al focolare. $\eta c \hspace{1cm} \text{rendimento di regolazione mensile.}$

 η gn rendimento di generazione medio mensile (compresa energia elettrica di bruciatore e pompa di circolazione).

 ηtu rendimento termico utile del generatore.

Energia primaria annuale richiesta: Q = 5329695 MJ/a 1480471 kWh_t/a di cui: per riscaldamento : 5329695 MJ/a 1480471 kWh_t/a

ηp = Qp / Q = Rendimento di produzione medio annuale : 86,6 %

ηp,s = QH,gn,out / QH,gn,in = Rendimento di generazione medio per riscaldamento: 88,0 %

 $\eta g,s = Qhvs,s / Q = Rendimento globale medio annuale per il riscaldamento: 60,3 %$

Consumo annuo: 287,5 MJ/(m³a) 79,9 kWh₁/(m³a)

corrispondenti, (per il volume riscaldato di 18539,5 m³), a:

154233 Nm³/a di Metano pci = 34.00 MJ/Nm³

e 10958 kWh/a di energia elettrica.